Liposomal Cyclosporine A for Inhalation (L-CsA-i) to Treat Bronchiolitis Obliterans Syndrome: Novel Formulation and Drug-Specific Delivery System

BACKGROUND

- Although lung transplantation (LTx) has become an effective treatment option for end-stage lung disease, long-term allograft viability remains a challenge to extended survival. (Fig 1)
- Following LTx, three or more immunosuppressive medications are used as standard of care to maintain the lung allograft. Regardless of maintenance regimen, bronchiolitis obliterans syndrome (BOS) is a major limitation to lung allograft survival1. (Fig 2)
- BOS is a fatal, rapidly progressive lung disease caused by T-cell-mediated inflammation that leads to blockage of the bronchioles, resulting in respiratory failure and death. A
- Currently, there is no approved therapy for the treatment or prevention of BOS.
- Cyclosporine A (CsA) given topically to the airways is a promising candidate to increase local immunosuppression and reduce systemic toxicity, but is highly insoluble2,3,7,8 (Fig 3). Two different topical formulations of inhaled CsA have been clinically investigated: CsA-PG (CsA dissolved in propylene glycol) and, more recently, L-CsA-i (Liposomal Cyclosporine A for inhalation). L-CsA-i is a true liposome of CsA designed specifically for use with Breath Therapeutics’ eFlow® Nebulizer System.

METHODS

- Retrospective comparison of in vitro and clinical data from prospective randomized clinical trials.
- CsA-PG (62.5 mg/mL) was dosed 300 mg/5 mL 3-times-weekly and was compared to L-CsA-i (liposome reconstituted in 0.25% saline, 4 mg/mL) in doses of 5 mg/0.25 mL (single lung transplantation [SLTx]) or 10 mg/2.5 mL (double lung transplantation [DLTx]) per twice-daily inhalation.
- CsA-PG was delivered by a Sidestream Disposable Nebulizer and Multidose Compressor. L-CsA-i was delivered by the L-CsA-i eFlow Nebulizer System.
- Premedication with lidocaine and albuterol was necessary to improve tolerability with CsA-PG, reported tolerability rates for CsA-PG reflect the use of premedication.
- No premedication was used in the L-CsA-i studies.
- Blood samples for PK analysis were collected before inhalation and after inhalation, at 15, 30, and 60 mins post dosing and 2, 4, 8, 12, and 24 hrs post dosing.

RESULTS

- Tolerability data were assessed from 373 patient-months exposure to CsA-PG and 198 patient-months exposure to L-CsA-i.
- Select symptoms of airway irritation were reported in Table 1.

RESULTS (CONT’D)

- L-CsA-i has improved tolerability and may increase adherence compared to inhaled CsA-PG.
- L-CsA-i uses lower total dose exposure to achieve constant levels of drug in the airway compared to inhaled CsA-PG.
- L-CsA-i is administered more frequently, but the total inhalation time per week is about 40% that of CsA-PG, which is an important reduction in treatment burden.
- Improved PK and tolerability profiles for L-CsA-i provide several advantages over other inhaled CsA formulations, and warrant further study. BOSTON-1 and BOSTON-2, paired Phase 3 efficacy and safety studies of L-CsA-i for the treatment of BOS following LTx, are ongoing.

CONCLUSIONS

- L-CsA-i is an investigational compound and its safety and efficacy have not been established.

REFERENCES

AKNOWLEDGEMENTS

The content of this theme is Dr. Albiet Mönke, MD, who served as the Principal Investigator for the A001 clinical study.

Disclosure: L-CsA-i is an investigational compound and its safety and efficacy have not been established.